Robust Artificial Intelligence

Reading Seminar; Tsinghua University
Thomas G. Dietterich, Oregon State University
tgd@cs.orst.edu

The Class So Far

- Lecture 1: Calibrated Probabilities (Closed World)
- Lecture 2: Thresholding Confidence Indicators (Closed World)
- Lecture 3: Open World

Lecture 3: Open Category Detection

• Training:

- Data: $(x_1, y_1), \dots, (x_N, y_N)$ drawn from D_0
- $y_i \in \{1, ..., K\}$

Testing:

- Data: Mixture D_m of data from D_0 and D_a
- $(x,y) \sim D_a$ belong to new classes not seen during training ("alien categories")

• Goal:

- Given a query x_q , does it belong to D_a or D_0 ?
- If from D_a , REJECT as alien
- Else classify using a classifier trained on D_0 data

Papers for Today

- Bendale, A., & Boult, T. (2016). Towards Open Set Deep Networks. In CVPR 2016 (pp. 1563–1572). http://doi.org/10.1109/CVPR.2016.173
- Liu, S., Garrepalli, R., Dietterich, T. G., Fern, A., & Hendrycks, D. (2018). Open Category Detection with PAC Guarantees. *Proceedings of the 35th International Conference on Machine Learning, PMLR*, 80, 3169–3178. http://proceedings.mlr.press/v80/liu18e.html
- Shafaei, A., Schmidt, M., & Little, J. (2018). Does Your Model Know the Digit 6 Is Not a Cat? A Less Biased Evaluation of "Outlier" Detectors. arXiv 1809.04729

Challenges of Open Category Recognition

- Discriminative training seeks the minimum information sufficient to separate class k from the other classes $\{1, ..., k-1, k+1, ..., K\}$
- Feature selection based on discriminative power (e.g., mutual information) may discard features that would be important for detecting aliens

Discarding Useful Features

- In my insect identification project, we converted images to monochrome because experiments showed that color was not needed for accurate classification
- Claim: It is never safe to discard features when looking for anomalies/novelty

Visualizing the Challenges

• 4-Gaussian Data Set

Ideal Method

- Estimate the density of each known class P(x|k)
- If $\max_{k} P(x_q|k) > \tau$ then classify as k
- Else REJECT

- This could be further improved if we had a theory of the classes
 - Typical separation from one another
 - Distinctiveness (how well can they be discriminated from each other)
 - Component parts (e.g., new class of vehicle will probably have wheels)

Approximating the Ideal

- Salakudtinov et al. (2011)
 - Hierarchical probabilistic clustering model
 - Each node contains a model in terms of subparts
 - Each subpart has an appearance model in terms of low-level filters learned from 1 million+ web images
- Classification:
 - Deciding where to put x_q
 - As an instance of an existing concept
 - As an instance of a new concept
- Not evaluated as an open category model

Multi-layer RBM

General Purpose Approaches

- Thresholding Standard Classifiers
- Anomaly Detection Filter
- Supervised Learning with Synthetic Open Space Examples
- "Other"

Method 1: Thresholding Standard Classifiers

- Let $f(x) = [\hat{p}(y = 1|x), ..., \hat{p}(y = K|x)]$
- Let $\hat{p}_{max} = \max_{k} \hat{p}(y = k|x)$
- REJECT if $\hat{p}_{max} < au$
- Else predict $\arg \max_{k} \hat{p}(y = k|x)$

 This does not work well because it focuses on the areas near the decision boundaries

Method 1': Thresholding 1-vs-rest Binary Classifiers

- For each training class k, learn a binary classifier $f_k(x) = P(y = k|x)$ versus $y \neq k$
- Set a threshold τ_k for each class
- If $f_k(x) < \tau_k$ for all k, then REJECT
- Else classify $\hat{y} = \arg \max_{k} f_k(x)$
- This also doesn't work well, because it focuses on the one-vs-rest decision boundaries
- But by setting τ_k large enough, it works better than thresholding the multinomial logit (softmax)

Method 2: Series Anomaly Detector

- Per-Class Anomaly Detectors:
 - Distance Based AD (distance to nearest neighbor)
 - One-Class SVM
 - Extreme Value Distribution Models
- Multiclass Anomaly Detectors:
 - Kernel Null Space Method
 - Neural Fisher Discriminant

Extreme Value Distribution Anomaly Detection

- The Weibull Distribution is one possible model of the sampling distribution of the max
 - Repeat for i = 1, ..., N
 - Draw sample S_i of size n from distribution D
 - Let $x_i = \max_{x \in S_i} x$
 - The points $\{x_1, ..., x_N\}$ exhibit an extreme value distribution
- The CDF of the Weibull is $F(x) = 1 \exp\left(\frac{\|x \tau\|}{\lambda}\right)^{\kappa}$
 - τ "location parameter"
 - λ "scale parameter"
 - κ "shape parameter" $\kappa \in [1,2]$

Extreme Value Distribution Anomaly Detection

- Bendale & Boult:
 - Let μ_k be the mean of the data points in class k
 - Let $\{x_1, ..., x_N\}$ be the N points in class k most distant from μ_k
 - Fit a Weibull distribution to them
- The probability that x_q is an alien with respect to class k is $F(\|x_q \mu_k\|)$
 - This is heuristic
 - We could have just set a threshold on $||x_q \mu||$ but this attempts to calibrate the tails of the distribution for each class so they are all on the same scale
- Let $P_a(x_q) = \min_k F_k(||x_q \mu_k||)$
- If $P_a(x_q) > \tau$ then REJECT

OpenMax (Bendale & Boult, 2015)

- Let ℓ_1, \dots, ℓ_K be the activations of the penultimate layer (the input to the softmax)
- Sort in descending order and index using k
- $\ell_0 \coloneqq 0$
- For k = 1, ..., C
 - Let $\omega_k = 1 \frac{C k}{k} \exp\left(\frac{\|x_q \tau_k\|}{\lambda_k}\right)^{\kappa_k}$
 - $\ell_0 \coloneqq \ell_0 + (1 \omega_k)\ell_k$
 - $\ell_k \coloneqq \omega_k \ell_k$
- Output Softmax($\ell_0, \ell_1, ..., \ell_K$)
- If class 0 has highest probability, then REJECT

Kernel Null Space Method

(Bodesheim, Freytag, Rodner, Kemmler, Denzler, CVPR 2013)

- Let N_k be the number of training examples for class k
- Assume $N_k < d$ (the input dimension)
- Assume the training examples are linearly independent
- Then there exists a linear transformation that maps all examples in class k to a unique point t_k
- Use $\min_{\mathbf{k}} \|x_q t_k\|$ as the anomaly score

Figure 2. Visualization of NFST using three classes mapped from the input space (*left*) to the null space (*right*), adapted from [7].

Kernel Null Space Method (2)

- Let $k(x_i, x_j)$ be a kernel function whose feature mapping is $\phi(x)$
- If we use a high-dimensional kernel (e.g., the Gaussian) then $N_k \ll d_\phi$, so we can always compute this null space mapping
- Local version: Compute the null space mapping using only the M nearest neighbors to x_q (where, e.g., M=750)
- Question: What does the null space mapping do to the empty space?

Neural Fisher Discriminant (Hassan & Chan, arXiv 2018)

- Learn an encoding network g such that
 - $\mu_k = \frac{1}{N_k} \sum_{i=1}^{N_k} g(x_{i,k})$ "mean latent space value"
 - $\sum_{k=1}^{K} \sum_{i=1}^{N_k} \|g(x_{i,k}) \mu_k\|^2$ "intra-class spread" is minimized
 - $\min_{k,k'} \|\mu_k \mu_{k'}\|^2$ "between class spread" is maximized
 - They train using minibatches to compute the above
- Compute the anomaly score for x_q as

$$A(x_q) = \min_{k} \|g(x_q) - \mu_k\|$$

Method 3: Supervised Learning with Synthetic Examples

- Train a GAN and use it to generate synthetic alien data points in the open space
- Train a multiclass classifier to discriminate the K known classes from these synthetic examples
- Classify into the most likely class

Ge, Demyanov, Chen & Garnavi: Generative OpenMax

- Train Conditional GAN (DCGAN)
 - Conditioned on the *K* known classes
 - Input encoded as one-hot vector
- Train a standard *K*-class classifier
- Generate candidate "aliens"
 - Feed mixture vectors as input (0,0,0.5,0.5,0,...,0)
 - If the classifier is confidence, then discard the candidate
- Now train OpenMax network with K+1 classes
 - REJECT if either the classifier predicts the "alien" class (K+1) or class 0

Counterfactual Examples

(Neal, Olson, Fern, Wong, Li, arXiv 2018)

- Generate an example x that resembles target class K as much as possible but lies on the "other side" of the decision boundary separating the known and unknown classes
- Let E be an encoder, G the generator of a DCGAN, and C_K be a K-class classifier with softmax output
- Let $C_K(x)_k$ be the logit of class k

•
$$z^* = \min_{z} ||z - E(x)||^2 + \log(1 + \sum_{k=1}^{K} C_K(G(z))_k)$$

Example Counterfactual Images

Results

Other Methods

- OSNN: Nearest Neighbor Distance Ratio (Mendes-Junior et al. MLJ 2017)
 - Let $n_1 = (x_1, y_1)$ be the nearest neighbor to x_q
 - Let $n_2 = (x_2, y_2)$ be the nearest neighbor to x_q whose class $y_2 \neq y_1$
 - $ratio = \frac{d(x_q, x_1)}{d(x_q, x_2)}$
 - If $ratio > \tau$ then REJECT
 - Else classify as $\hat{y} = y_1$
- ODIN (Liang, Li, Srikant, ICLR 2018)
 - Tune softmax temperature T
 - Let $\hat{S} := \hat{p}(\hat{y}|x_q; T)$ be the softmax score of the input query
 - Let $\tilde{x}_q = x \epsilon [sgn(-\nabla_x \log \hat{S})]$
 - Let $\tilde{S} := \hat{p}(\hat{y}|\tilde{x}_q;T)$ be the softmax score of the perturbed instance
 - If $\tilde{S} < \tau$ REJECT else classify as \hat{y}

Another Resource: Unlabeled Data

- Da, Yu, Zhou (2014) "Learning with Augmented Class by Exploiting Unlabeled Data"
 - Formulate a kind of semi-supervised learning problem to find a decision boundary separating each known from the unknown classes
- Liu et al (2018). Use unlabeled data to set the rejection threshold

Obtaining Theoretical Guarantees

Nominal Distribution

Mixture Distribution

Proportion of Aliens = α

$$P_m = (1 - \alpha)P_0 + \alpha P_a$$

Cumulative CDF of Alien Anomaly Scores: F_a

Want to have recall = 1 - q

Choosing au for target quantile q

$$P_m = (1 - \alpha)P_0 + \alpha P_a$$

implies that

$$F_m(x) = (1 - \alpha)F_0(x) + \alpha F_a(x)$$

CDFs of Nominal, Mixture, and Alien Anomaly Scores

$$F_a(x) = \frac{F_m(x) - (1 - \alpha)F_0(x)}{\alpha}$$

32

What We Have Are Empirical CDFs

$$\hat{F}_a(x) = \frac{\hat{F}_m(x) - (1 - \alpha)\hat{F}_0(x)}{\alpha \atop \text{Tsinghua}}$$

We Use the Empirical Estimate $\hat{ au}_{0.05}$

EstimateTau(S_0 , S_m , q, α)

- 1: Anomaly scores of S_0 : x_1, x_2, \dots, x_k
- 2: Anomaly scores of S_m : y_1, y_2, \dots, y_m
- 3: Compute empirical CDFs \widehat{F}_0 and \widehat{F}_m .
- 4: Calculate \hat{F}_a using

$$\widehat{F}_a(x) = \frac{\widehat{F}_m(x) - (1 - \alpha)\widehat{F}_0(x)}{\alpha}.$$

5: Output detection threshold

$$\hat{\tau}_q = \max_{u \in S} \hat{F}_a(u) \le q,$$

where $S = \{x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_m\}.$

Theoretical Guarantee

[Liu, Garrepalli, Fern, Dietterich, ICML 2018]

• Theorem: If

$$n > \frac{1}{2} \ln \frac{2}{1 - \sqrt{1 - \delta}} \left(\frac{1}{\epsilon}\right)^2 \left(\frac{2 - \alpha}{\alpha}\right)^2$$

then with probability $1 - \delta$ the alien detection rate will be at least $1 - (q + \epsilon)$

What if we don't know the exact value of α ?

Def: We say that an anomaly detector is *sufficient*, if the score CDFs satisfy

$$F_0(x) \ge F_a(x)$$
, for all $x \in \mathbb{R}$.

Corollary 1: Replace α with α'

Assume F_0 and F_a sufficient, and continuous with convex support. $|S_0| = |S_m| = n$. For any $\epsilon \in (0, 1-q)$ and $\delta \in (0, 1)$, if

$$n \geq \frac{1}{2} \ln \frac{2}{1 - \sqrt{1 - \delta}} \left(\frac{1}{\epsilon}\right)^2 \left(\frac{2 - \alpha'}{\alpha'}\right)^2$$

Algorithm 1 will return a threshold $\hat{\tau}_q$ that achieves an alien detection rate of at least $1-(q+\epsilon)$ with probability $1-\delta$

Note: $\hat{\tau}$ will be more conservative

Four Experimental Questions

- 1. How accurate is our estimate of τ_q ?
- 2. How loose is the bound on n?
- 3. How good are Recall and FAR in practice?
- 4. What is the impact of using $\alpha' > \alpha$?

Q1: How accurate is our estimate of τ_q ?

Q2: How loose is the bound on n?

Q3: How good are Recall and FPR in practice? UCI Datasets

Q3: How good are Recall and FPR in practice? UCI Datasets

Q4: What is the impact of using $\alpha' > \alpha$?

Assessment

- This area is mostly an empirical mess and lacks theory
- Our PAC result requires access to unlabeled data containing aliens
 - ullet AND a tight upper bound on lpha

Next Lecture: Anomaly Detection

- Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2012). Isolation-Based Anomaly Detection. ACM Transactions on Knowledge Discovery from Data, 6(1), 1–39. http://doi.org/10.1145/2133360.2133363
- Emmott, A., Das, S., Dietterich, T., Fern, A., & Wong, W.-K. (2015).
 Systematic construction of anomaly detection benchmarks from real data. https://arxiv.org/abs/1503.01158
- Siddiqui, A., Fern, A., Dietterich, T. G., & Das, S. (2016). Finite Sample Complexity of Rare Pattern Anomaly Detection. In *Proceedings of UAI-2016* (p. 10). http://auai.org/uai2016/proceedings/papers/226.pdf

Citations

- Bendale, A., & Boult, T. (2016). Towards Open Set Deep Networks. In CVPR 2016 (pp. 1563–1572). http://doi.org/10.1109/CVPR.2016.173
- Bodesheim, P., Freytag, A., Rodner, E., Kemmler, M., Denzler, J. (2013) Kernel Null Space Methods for Novelty Detection. CVPR 2013.
- Da, Q., Yu, Y., Zhou, Z-H. (2014) Learning with Augmented Class by Exploiting Unlabeled Data, AAAI 2014.
- Ge, Z., Demyanov, S., Chen, A., Garnavi, B. (2017). Generative OpenMax for Multi-Class Open Set Classification. arXiv 1707.07418.
- Hassen, M., Chan, P., (2018). Learning a Neural-network-based Representation for Open Set Recognition. arXiv 1802.04365.
- Liang, S., Li, Y., Srikant, R. (2018). Enhancing the Reliability of Out-of-distribution Image Detection in Neural Networks. ICLR 2018.
- Liu, S., Garrepalli, R., Dietterich, T. G., Fern, A., & Hendrycks, D. (2018). Open Category Detection with PAC Guarantees. *Proceedings of the 35th International Conference on Machine Learning, PMLR, 80,* 3169–3178. http://proceedings.mlr.press/v80/liu18e.html
- Mendes-Júnior, P., de Souza, R., Werneck, R., Stein, B. V., Pazinato, D. V., de Almeida, W. R. (2017). Nearest neighbors distance ratio open-set classifier. Machine Learning 106: 359–386.
- Neal, L., Olson, M., Fern, A., Wong, W-K., Li, F. (2018). Open Set Learning with Counterfactual Images. Proceedings of the European Conference on Computer Vision (ECCV 2018).
- Salakhutdinov, R., Torralba, A., Tenenbaum, J. (2011) Learning to Share Visual Appearance for Multiclass Object Detection. CVPR 2011.
- Shafaei, A., Schmidt, M., & Little, J. (2018). Does Your Model Know the Digit 6 Is Not a Cat? A Less Biased Evaluation of "Outlier" Detectors. arXiv 1809.04729