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The Class So Far

e Lecture 1: Calibrated Probabilities (Closed World)
e Lecture 2: Thresholding Confidence Indicators (Closed World)
e Lecture 3: Open World



Lecture 3: Open Category Detection

* Training:
 Data: (x4,y1), ..., (xy, yn) drawn from D,
ey, €{1,...,K}

e Testing:

e Data: Mixture D,,, of data from D, and D,

e (x,y) ~ D, belong to new classes not seen during training (“alien
categories”)

e Goal:

* Given a query x4, does it belong to D, or Dy?
e If from D, REJECT as alien
e Else classify using a classifier trained on D, data



Papers for Today

* Bendale, A., & Boult, T. (2016). Towards Open Set Deep Networks. In
CVPR 2016 (pp. 1563-1572). http://doi.org/10.1109/CVPR.2016.173

 Liu, S., Garrepalli, R., Dietterich, T. G., Fern, A., & Hendrycks, D.
(2018). Open Category Detection with PAC Guarantees. Proceedings

of the 35th International Conference on Machine Learning, PMLR, 80,
3169—-3178. http://proceedings.mlr.press/v80/liul8e.html

e Shafaei, A., Schmidt, M., & Little, J. (2018). Does Your Model Know
the Digit 6 Is Not a Cat? A Less Biased Evaluation of “Outlier”
Detectors. arXiv 1809.04729



http://doi.org/10.1109/CVPR.2016.173
http://proceedings.mlr.press/v80/liu18e.html

Challenges of Open Category Recognition

. .. . . . Training Set
e Discriminative training seeks the

minimum information sufficient to G

separate class k from the other
classes{1,..,k—1,k+1,.. K}

e Feature selection based on
discriminative power (e.g., mutual

information) may discard features
that would be important for
detecting aliens




Discarding Useful Features

* In my insect identification
project, we converted images to
monochrome because
experiments showed that color
was not needed for accurate
classification

e Claim: It is never safe to discard
features when looking for
anomalies/novelty




Visualizing the Challenges

e 4-Gaussian Data Set
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ldeal Method

 Estimate the density of each known class P(x|k)

o If max P(xq ‘k) > 71 then classify as k
e Else REJECT

e This could be further improved if we had a theory of the classes
e Typical separation from one another
 Distinctiveness (how well can they be discriminated from each other)
e Component parts (e.g., new class of vehicle will probably have wheels)



Approximating the Ideal

e Salakudtinov et al. (2011)

* Hierarchical probabilistic clustering model

e Each node contains a model in terms of
subparts

e Each subpart has an appearance model in
terms of low-level filters learned from 1
million+ web images

e Classification:
* Deciding where to put x,

* As an instance of an existing concept
e As an instance of a new concept

* Not evaluated as an open category model
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General Purpose Approaches

* Thresholding Standard Classifiers

 Anomaly Detection Filter

e Supervised Learning with Synthetic Open Space Examples
e “Other”



Method 1: Thresholding Standard Classifiers

e Llet f(x) = [p(y = 1|x), ...,D(y = K|x)]

* Let Prax = mI?Xﬁ(y = k|x)
e REJECTif B r < T
* Else predict arg mlflxﬁ(y = k|x)

* This does not work well because it focuses on
the areas near the decision boundaries
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Method 1’: Thresholding 1-vs-rest Binary
Classifiers

* For each training class k, learn a binary classifier f; (x) = P(y = k|x)
versusy # k

e Set a threshold 7}, for each class
o If fi,(x) < 1} forall k, then REJECT

* Else classify y = arg max fie (%)

e This also doesn’t work well, because it focuses on the one-vs-rest decision
boundaries

e But by setting 7, large enough, it works better than thresholding the
multinomial logit (softmax)



Method 2: Series Anomaly Detector

e Per-Class Anomaly Detectors:

e Distance Based AD (distance to nearest
neighbor) Detector

* One-Class SVM
e Extreme Value Distribution Models

Anomaly

Training

Alx) > 1?

no

Examples

e Multiclass Anomaly Detectors: (X, 1)
e Kernel Null Space Method
e Neural Fisher Discriminant

y=fk)
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Extreme Value Distribution Anomaly Detection

 The Weibull Distribution is one possible model of the sampling
distribution of the max
e Repeatfori=1,...,N
e Draw sample §; of size n from distribution D

* letx; = mz}xx
XES;

e The points {xq, ..., x5} exhibit an extreme value distribution

INK
* The CDF of the Weibullis F(x) =1 — exp (”x;”)

e T “location parameter”
e A “scale parameter”
e K “shape parameter” k € [1,2]



Extreme Value Distribution Anomaly Detection

* Bendale & Boult:

e Let u;, be the mean of the data pointsin class k

e Let {xq, ..., x5} be the N points in class k most distant from p,
e Fit a Weibull distribution to them

* The probability that x, is an alien with respect to class k is
F(llxq = pell)

 We could have just set a threshold on ||xq — u” but this attempts to

calibrate the tails of the distribution for each class so they are all on
the same scale

* Let Pa(xq) = mkin Fk(qu — llk”)
* If P;(x;) > 7 then REJECT

e This is heuristic



OpenMax (Bendale & Boult, 2015)

e Let ¥4, ..., £k be the activations of the penultimate layer (the input to the
softmax)

e Sort in descending order and index using k
i ‘go = ()
eFork=1,..,C

K
C—k ~
* letwy =1—=——exp (leq)l Tk”)
k

o £y =140+ (1 —wp)fy
o £} = wily
e Qutput Softmax(®y, ¥4, ..., fx)
e If class O has highest probability, then REJECT




Kernel Null Space Method

(Bodesheim, Freytag, Rodner, Kemmler, Denzler, CVPR 2013)

e Let Nj be the number of training A A
examples for class k
......................................... "
e Assume N < d (the input dimension) g
e Assume the training examples are linearly
independent | T | »®
* Then there exists a linear transformation Q """"""""
that maps all examples in class k to a
unique point t; > >

_ Figure 2. Visualization of NFST using three classes mapped from
* Use mkm”xq — Tk ” as the anomaly score the input space (lefr) to the null space (right), adapted from [7].



Kernel Null Space Method (2)

e Let k(xl-, xj) be a kernel function whose feature
mapping is ¢ (x)
* |f we use a high-dimensional kernel (e.g., the Gaussian)

then Ny < dg, so we can always compute this null
space mapping

e Local version: Compute the null space mapping using
only the M nearest neighbors to x, (where, e.g.,, M =

750)

e Question: What does the null space mapping do to the
empty space?



Neural Fisher Discriminant
(Hassan & Chan, arXiv 2018)

* Learn an encoding network g such that

1 @N
° U = N_Zi=k19(xi,k) “mean latent space value”
k

* II§=1 Z]ivflng(xi,k) — ,uk”z “intra-class spread” is minimized

: 2 : ..
o rl?kr)”uk — || “between class spread” is maximized

e They train using minibatches to compute the above

* Compute the anomaly score for x, as
A(xq) = m,jn\\g(xq) — tk |



Method 3: Supervised Learning with Synthetic
Examples

* Train a GAN and use it to generate synthetic alien data points in the
open space

* Train a multiclass classifier to discriminate the K known classes from
these synthetic examples

 Classify into the most likely class



Ge, Demyanov, Chen & Garnavi: Generative
OpenMax

* Train Conditional GAN (DCGAN)

e Conditioned on the K known classes
* Input encoded as one-hot vector

* Train a standard K-class classifier

e Generate candidate “aliens”
* Feed mixture vectors as input (0,0,0.5,0.5,0,...,0)
e If the classifier is confidence, then discard the
candidate
 Now train OpenMax network with K 4+ 1 classes

e REJECT if either the classifier predicts the “alien” class
(K + 1) orclass 0



Counterfactual Examples

(Neal, Olson, Fern, Wong, Li, arXiv 2018)

 Generate an example x that resembles target class K as much as
possible but lies on the “other side” of the decision boundary
separating the known and unknown classes

e Let E be an encoder, G the generator of a DCGAN, and Cy be a K-
class classifier with softmax output

e Let Cx(x), be the logit of class k
+ 7" = minflz — E@)|1? +log (1 + 2~ Cx (6(2)), )



Example Counterfactual Images

Original Original Counterfactual
v

}

w
ey
18
»

23



Results
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Other Methods

e OSNN: Nearest Neighbor Distance Ratio (Mendes-
Junior et al. MLJ 2017)

* Letn; = (x1,y;) be the nearest neighbor to x,
* Letn, = (x3,y,) be the nearest neighbor to x,; whose class

Yo Y1
e ratio =

d(xgq,x1)
d(xq.x2)

e If ratio > 1 then REJECT
* Else classifyas y = y;

e ODIN (Liang, Li, Srikant, ICLR 2018)

e Tune softmax temperature T

o LetS = 15(37

; T) be the softmax score of the input query

X
e Let x’:q =x — ETSgn(—Vx log §)]

e LetS§ := }3(37
instance

Xq; T) be the softmax score of the perturbed

o If S < 7 REJECT else classify as §

25




Another Resource: Unlabeled Data

* Da, Yu, Zhou (2014) “Learning with Augmented Class by Exploiting
Unlabeled Data”

 Formulate a kind of semi-supervised learning problem to find a decision
boundary separating each known from the unknown classes

* Liu et al (2018). Use unlabeled data to set the rejection threshold
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Obtaining Theoretical Guarantees

Nominal Distribution Mixture Distribution

Proportion of Aliens = «a

B,=0—-a)P,+ aP,

Tsinghua
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Cumulative CDF of Alien Anomaly Scores: F,
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Choosing T for target quantile g
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Pm = (1_a)P0+C(Pa
implies that

Fn(x) = (1 — a)Fo(x) + aFa(x)



CDFs of Nominal, Mixture, and Alien Anomaly
Scores
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What We Have Are Empirical CDFs
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We Use the Empirical Estimate 7 os
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EstimateTau(Sy, S,,,, 9, @)

: Anomaly scores of Sg: x1, X5, =+, X

: Anomaly scores of S,,,: V1, V2, ***, Ym
. Compute empirical CDFs Fy and E,,.
. Calculate E, using

Fa (X) — Fm(x)—(ix—a)Fo (x) .

5: Output detection threshold

t. . =max F,(u) < g,
¢ =maxF(u) =¢q

where § = {xl»xZJ Xk Y1, Y2, "';ym}-



Theoretical Guarantee

[Liu, Garrepalli, Fern, Dietterich, ICML 2018]

N 11 2 (1)2 (Z—a)z
n — 1N —
2 1—-+1-6\€ a

then with probability 1 — § the alien detection rate will be atleast 1 — (q + €)

e Theorem: If




What if we don’t know the exact value of a?

Def: We say that an anomaly detector is sufficient, if the score CDFs
satisfy
Fy(x) = F,(x), for all x € R.

37



Corollary 1: Replace a with a’

Assume F, and F, sufficient, and continuous with convex support. |Sy| =
|S;,| =n.Foranye € (0,1 —qg)andd € (0,1),if

1 2 N2 (2—a"\?
n = -ln (—) — |,
2 1-vV1-6 \e€ a

Algorithm 1 will return a threshold 7,that achieves an alien detection
rate of at least 1 — (g + €) with probability 1 — &

Note: T will be more conservative
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B w e

Four Experimental Questions

How accurate is our estimate of 7,7

How loose is the bound on n?

How good are Recall and FAR in practice?
What is the impact of using a’ > a?



Q1: How accurate is our estimate of Tq?
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Q2: How loose is the bound on n?
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Q3: How good are Recall and FPR in practice?
UCI Datasets
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Q3: How good are Recall and FPR in practice?
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Q4: What is the impact of using a’ > a?
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Assessment

* This area is mostly an empirical mess and lacks theory

* Our PAC result requires access to unlabeled data containing aliens
e AND a tight upper bound on



Next Lecture: Anomaly Detection

e Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2012). Isolation-Based Anomaly
Detection. ACM Transactions on Knowledge Discovery from Data,
6(1), 1-39. http://doi.org/10.1145/2133360.2133363

* Emmott, A., Das, S., Dietterich, T., Fern, A., & Wong, W.-K. (2015).
Systematic construction of anomaly detection benchmarks from real
data. https://arxiv.org/abs/1503.01158

e Siddiqui, A., Fern, A., Dietterich, T. G., & Das, S. (2016). Finite Sample
Complexity of Rare Pattern Anomaly Detection. In Proceedings of UAI-
2016 (p. 10). http://auai.org/uai2016/proceedings/papers/226.pdf
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